Publications

SinePhase impedance analyzer technology used in scientific piezoelectric transducer research.

Journals and Papers:

  • Deshmukh, D. V., Reichert, P., Zvick, J., Labouesse, C., Künzli, V., Dudaryeva, O., Bar-Nur, O., Tibbitt, M. W., & Dual, J. (2022). Continuous Production of Acoustically Patterned Cells Within Hydrogel Fibers for Musculoskeletal Tissue Engineering. Advanced Functional Materials (Vol. 32, Issue 30, p. 2113038). DOI: 10.1002/adfm.202113038
  • Delacour, C., Stephens, D. S., Lutz, C., Mettin, R., & Kuhn, S. (2020). Design and Characterization of a Scaled-up Ultrasonic Flow Reactor. Organic Process Research & Development 2020, 24(10), 2085-2093. DOI: 10.1021/acs.oprd.0c00148
  • Liu, C., Zhuang, Y., Nasrollahi, A., Lu, L., Haider, M. F., & Chang, F. K. (2020). Static Tactile Sensing for a Robotic Electronic Skin via an Electromechanical Impedance-Based Approach. Sensors 2020, 20(10), 2830. DOI: 10.3390/s20102830
  • Chikh-Bled, F. H., Kherraz, N., Sainidou, R., Rembert, P., & Morvan, B. (2019). Piezoelectric phononic plates: retrieving the frequency band structure via all-electric experiments. Smart Materials and Structures, 28(11), 115046. DOI: 10.1088/1361-665x/ab4aac
  • Zhuang, Y., Kopsaftopoulos, F., Dugnani, R., & Chang, F.-K. (2017). Integrity monitoring of adhesively bonded joints via an electromechanical impedance-based approach. Structural Health Monitoring, 17(5), 1031–1045. DOI: 10.1177/1475921717732331
  • Jordens, J., Canini, E., Gielen, B., Van Gerven, T., & Braeken, L. (2017). Ultrasound Assisted Particle Size Control by Continuous Seed Generation and Batch Growth. Crystals, 7(7), 195. DOI: 10.3390/cryst7070195
  • Zhuang, Y., Li, Y.-H., Kopsaftopoulos, F., & Chang, F.-K. (2016). A self-diagnostic adhesive for monitoring bonded joints in aerospace structures. In J. P. Lynch (Ed.), Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. DOI: 10.1117/12.2219361
  • Dugnani, R., Zhuang, Y., Kopsaftopoulos, F., & Chang, F.-K. (2016). Adhesive bond-line degradation detection via a cross-correlation electromechanical impedance–based approach. Structural Health Monitoring: An International Journal, 15(6), 650–667. DOI: 10.1177/1475921716655498
  • Iranmanesh, I., Ohlin, M., Ramachandraiah, H., Ye, S., Russom, A., & Wiklund, M. (2016). Acoustic micro-vortexing of fluids, particles and cells in disposable microfluidic chips. Biomedical Microdevices, 18(4). DOI: 10.1007/s10544-016-0097-4
  • Isla, J., Seher, M., Challis, R., & Cegla, F. (2016). Optimal impedance on transmission of Lorentz force EMATs. API Conference Proceedings 1706, 090012. DOI: 10.1063/1.4940549
  • Ohlin, M., Iranmanesh, I., Christakou, A. E., & Wiklund, M. (2015). Temperature-controlled MPa-pressure ultrasonic cell manipulation in a microfluidic chip. Lab on a Chip, 15(16), 3341–3349. DOI: 10.1039/c5lc00490j
  • Iranmanesh, I., Ramachandraiah, H., Russom, A., & Wiklund, M. (2015). On-chip ultrasonic sample preparation for cell based assays. RSC Advances, 5(91), 74304–74311. DOI: 10.1039/c5ra16865a
  • Jordens, J., Gielen, B., Braeken, L., & Van Gerven, T. (2014). Determination of the effect of the ultrasonic frequency on the cooling crystallization of paracetamol. Chemical Engineering and Processing: Process Intensification, 84, 38–44. DOI: 10.1016/j.cep.2014.01.006
  • Mansoura, S. A., Marechal, P., Morvan, B., Hladky-Hennion, A. C., & Dubus, B. (2014). Active control of a piezoelectric Phononic Crystal using electrical impedance. IEEE International Ultrasonics Symposium (IUS). DOI: 10.1109/ultsym.2014.0233
  • Ohlin, M., Christakou, A. E., Frisk, T., Önfelt, B., & Wiklund, M. (2013). Influence of acoustic streaming on ultrasonic particle manipulation in a 100-well ring-transducer microplate. Journal of Micromechanics and Microengineering, 23(3), 35008. DOI: 10.1088/0960-1317/23/3/035008
  • Iranmanesh, I., Barnkob, R., Bruus, H., & Wiklund, M. (2013). Tunable-angle wedge transducer for improved acoustophoretic control in a microfluidic chip. Journal of Micromechanics and Microengineering, 23(10), 105002. DOI: 10.1088/0960-1317/23/10/105002
  • Derriso, Mark M., Little, II, John E., Vehorn, Keith A., Davis, Matthew J., & DeSimio, Martin P. (2011). Crack Detection Using Combinations of Acoustic Emission and Guided Wave Signals from Bonded Piezoelectric Transducers. Defense Technical Information Center. DTIC: ADA584923

Thesis:

  • Isla, J. (2017). Coded excitation for low-SNR systems and EMATs (Imperial College London). DOI: 10.25560/49217
  • Karlsson, F., & Kalmaru, E. (2017). Optimizing an Ultrasound Based Tissue Micro Engineering System (KTH Stockholm). URN: urn:nbn:se:kth:diva-202200
  • Leibacher, I. (2016). Acoustophoresis of cells, core-shell particles, disks and droplets (ETH Zurich). DOI: 10.3929/ETHZ-A-010579278
  • Mansoura, S. A. (2015). Contrôle de la propagation des ondes ultrasonores dans des cristaux phononiques piézoélectriques (Université du Havre). tel-01623552
  • Favier, W. (2015). Investigation of the effects of structure-sensor interaction on piezoceramic transducers for structural health monitoring applications (University of Queensland). DOI: 10.14264/uql.2015.778
  • Cappon, H.J.. (2014). Numerical and experimental design of ultrasonic particle filters for water treatment (Wageningen University). http://edepot.wur.nl/291427
  • Ye, S. (2014). Acoustic mixing in microfluidic chip using a Langevin transducer (KTH Stockholm). URN: urn:nbn:se:kth:diva-156644
  • Beniaminov, I. (2013). Impedance Spectroscopy on Resonant Systems (Vienna University of Technology). URN: urn:nbn:at:at-ubtuw:1-48136

Products

Model 16777k

Impedance Analyzer | LCR Meter

For impedance measurements between 1 kHz and 16777 kHz.

Model 2097k

Impedance Analyzer | LCR Meter

For impedance measurements between 1 kHz and 2097 kHz.

Model 262k

Impedance Analyzer | LCR Meter

For impedance measurements between 1 kHz and 262 kHz.